Sample Challenge Exam

Try these problems. The answers can be found at the end of the exam.

1. A sample of mercury has a temperature of $215^{\circ} \mathrm{F}$. Calculate the equivalent Celsius and Kelvin temperature values.
2. A sample has a density of $0.0365 \mathrm{mg} / \mathrm{m}^{3}$. Calculate the density in units of oz per yd^{3}.
3. The percentage composition of a bio-organic compound was reported to be:

$13.9 \% \mathrm{C}$	$2.78 \% \mathrm{H}$	$12.9 \% \mathrm{~N}$	$25.9 \% \mathrm{O}$	$14.8 \% \mathrm{~S}$	$29.4 \% \mathrm{I}$

Enter the subscripts: C_H_N_O_S_I_
4. For the reaction : $2 \mathrm{C}_{10} \mathrm{H}_{22}(\mathrm{~s})+31 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 20 \mathrm{CO}_{2}(\mathrm{~g})+22 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a. How many grams of water result when reaction of decane, $\mathrm{C}_{10} \mathrm{H}_{22}$, in air yields 446 grams of carbon dioxide, CO_{2} ?
b. If 0.113 moles of decane are consumed, how many molecules of water, $\mathrm{H}_{2} \mathrm{O}$, are produced?
5. The decomposition of nitroglycerin may be represented by the balanced equation:
$4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(\mathrm{~s}) \rightarrow 6 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
If 325 mL of water are produced by the decomposition of 1.837 kg of nitroglycerin, what is the:
a. Maximum theoretical yield of water?
b. Actual percentage yield of water?
c. Actual yield of CO_{2} ?
d. Unreacted nitroglycerin?
6. The alcohol in the equation below will burn completely to produce only carbon dioxide and water:

$$
\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}_{(\mathrm{ll})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

a. Balance the equation.
b. How many grams of carbon dioxide can be produced from 113.0 grams of the alcohol and 255.4 grams of oxygen?
c. What reactant will be left over?
d. How many grams of the excess reactant will be left over?
7. A fixed sample of an ideal gas at $266^{\circ} \mathrm{C}$ and 631 torr pressure occupies a volume of $250 \mathrm{~cm}^{3}$. At what Celcius temperature will the gas occupy $693 \mathrm{~cm}^{3}$ at a pressure of 433 torr?
8. 6.96 g of CO $2,7.62 \mathrm{~g}$ of Ne , and 2.51 g of He are confined in a 2.50 liter cylinder at 298 K with an unknown quantity of O_{2}. If the total pressure in the cylinder is 54.9 atm ,;
a. What is the partial pressure of O_{2} in atmospheres?
b. How many grams of O_{2} are present?
9. Analysis of a 1.33 gram sample of hydrazine shows that it is $87.5 \% \mathrm{~N}$ and the remainder is hydrogen. If the sample is vaporized at $91^{\circ} \mathrm{C}$, it has a density of 0.553 grams/liter and exerts a pressure of 0.498 atm. For the hydrazine find the:
a. Molar mass
b. Empirical formula
c. Molecular formula
10. Calculate the molarity of a solution that is $17.8 \% \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and has a density of $1.26 \mathrm{~g} / \mathrm{mL}$.
11. A 7.86 mL sample of $0.223 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 61.2 mL of $0.515 \mathrm{M} \mathrm{AgNO}_{3}$. Calculate the mass of silver sulfate precipitate formed and molarities of the ions remaining in solution.
12. Complete the table by providing a correct answer for each empty box.

Isotope	Protons	Electrons	Neutrons	Mass Number	Atomic Mass	Atomic Number	Charge
${ }^{194} \mathrm{Pt}^{+2}$							
		54	77	129			
	97		151				+3

13. Determine the oxidation number of the bold, underlined atom and write it in the space provided.
a. KIO_{4}
b. $\mathrm{Ca}_{2} \underline{\mathbf{S}}_{2} \mathrm{O}_{3}$
c. $\mathrm{H}_{2} \underline{\mathrm{C}}_{2} \mathrm{O}_{4}$
d. $\mathrm{H}_{2} \underline{\mathrm{O}}_{2}$
e. $\mathrm{HPO}_{3}{ }^{2-}$
14. Provide the completely correct name of formula:

IUPAC Name	Formula	Formula	IUPAC Name
Vanadium(II) phosphide		$\mathrm{PbC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	
Cobalt(III) hypoiodite		CdSeO_{4}	
Dichromic acid		$\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$	
Acetic acid		SbF_{5}	
Gold(III) thiosulfate		$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HAsO}_{3}$	

15. Write the Total Ionic and Net lonic reactions for the following completed Conventional reactions.
a. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(a q)+\mathrm{CaCl}_{2}(a q) \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}(a q)+\mathrm{CaCO}_{3}(s)$
b. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$
16. What is the appropriate treatment for a chemical injury caused by spilling concentrated sulfuric acid on skin?
17. To what precision can an object be weighed on the usual electronic laboratory balance?
18. To what precision in milliliters can a standard 50 mL buret be read and recorded?
19. Determine the density with units of a solid object from the student data listed below:

Mass of empty container	134.865 g
Mass of container + object	256.104 g
Initial graduated cylinder volume reading	45.3 mL
Graduated cylinder + solid volume reading	96.3 mL

Answers to Sample Challenge Exam

1. $102^{\circ} \mathrm{C}$ and 375 K
2. $9.38 \times 10^{-7} \mathrm{oz} / \mathrm{yd}^{3}$
3. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{I}$
4. a) $201 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ b) $7.48 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
5. a) $364 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ b) 89.2% c) $953 \mathrm{~g} \mathrm{CO}_{2}$ d) 198 g nitroglycerin unreacted
6. a) $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}(I)+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ b) $234 \mathrm{~g} \mathrm{CO}_{2}$ c) $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}$ d) 28.9 g
7. $752^{\circ} \mathrm{C}$
8. a) 43.5 atm O_{2} b) $142 \mathrm{~g} \mathrm{O}_{2}$
9. a) molar mass $=33 \mathrm{~g} / \mathrm{mol}$ b) NH_{2} c) $\mathrm{N}_{2} \mathrm{H}_{4}$
10. 1.07 M
11. Total volume $69.1 \mathrm{~mL},[\mathrm{H}+]=0.0508 \mathrm{M},\left[\mathrm{NO}_{3}-\right]=0.456 \mathrm{M},[\mathrm{Ag}+]=0.405 \mathrm{M},\left[\mathrm{SO}_{4}{ }^{2-}\right]=0 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]=55$ M , mass of precipitate of $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})=547 \mathrm{~g}$
12.

Isotope	Protons	Electrons	Neutrons	Mass Number	Atomic Mass	Atomic Number	Charge
${ }^{194} \mathrm{Pt}^{+2}$	78	76	116	194	195.1	78	+2
${ }^{129} \mathrm{Te}^{-2}$	52	54	77	129	127.6	52	-2
${ }^{248} \mathrm{Bk}^{+3}$	97	94	151	248	247	97	+3

13. a) +7 b) +1 c) +3 d) -1 e) +3
14.

IUPAC Name	Formula		Formula	IUPAC Name
Vanadium(II) phosphide	$\mathrm{V}_{3} \mathrm{P}_{2}$		$\mathrm{PbC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Lead(II) oxalate dihydrate
Cobalt(III) hypoiodite	$\mathrm{Co}(\mathrm{HIO})_{3}$		CdSeO_{4}	Cadmium selenate
Dichromic acid	$\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$		$\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$	Hydrosulfuric acid
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$	SbF_{5}	Antimony pentafluoride or antimony(V) fluoride	
Gold(III) thiosulfate	$\mathrm{Au}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$		$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HAsO}_{3}$	Ammonium hydrogen arsenite

15.

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(a q)+\mathrm{CaCl}_{2}(a q) \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}(a q)+\mathrm{CaCO}_{3}(s)$	
Total ionic equation	$2 \mathrm{NH}_{4}^{+}(a q)+\mathrm{CO}_{3}^{-2}(a q)+\mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \rightarrow 2 \mathrm{NH}_{4}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)+\mathrm{CaCO}_{3}(s)$
Net ionic equation	$\mathrm{CO}_{3}^{-2}(a q)+\mathrm{Ca}^{2+}(a q) \rightarrow \mathrm{CaCO}_{3}(s)$
$\mathrm{b}) \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{HCl}_{\text {(aq) }} \rightarrow \mathrm{NaCl}_{\text {(aq) }}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$	
Total ionic equation	$\mathrm{Na}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$
Net ionic equation	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)+\mathrm{H}^{+}(a q) \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$

16. Wash with tap water, then with sodium bicarbonate solution and again rinse with water.
17. 0.001 gram or 0.0001 depending on the balance.
18. 0.01 mL
19. $2.38 \mathrm{~g} / \mathrm{mL}$
